Reaction Ways of Lignin Monomer Conversion in Propanol-2
- Authors: Stepacheva A.A.1, Tereshina E.D.1, Tarasova A.A.1, Akinchits M.V.1, Ershova E.A.1, Emelyanova S.D.1, Matveeva V.G.1, Sulman M.G.1
-
Affiliations:
- Tver State Technical University
- Issue: Vol 65, No 4 (2024)
- Pages: 463-473
- Section: ARTICLES
- URL: https://ruspoj.com/0453-8811/article/view/684232
- DOI: https://doi.org/10.31857/S0453881124040078
- EDN: https://elibrary.ru/RHUOVL
- ID: 684232
Cite item
Abstract
Lignin, a large-scale waste from the processing of lignocellulose biomass, is a promising raw material to obtain products with high added value. The processes of lignin depolymerization lead to the formation of oxygen-containing compounds, a.i. phenol derivatives. Since the depolymerization of lignin involves many reactions, including the conversion of monomers, the purpose of this work is to study the ways of conversion of phenol, anisole, guaiacol, syringol, eugenol, hydroquinone, and p-ethylphenol both as individual components and in a mixture during its catalytic processing. The experiments were carried out in the medium of propanol-2 in the presence of Ni–Ru/SiO2@HPS catalyst varying the process conditions. The composition of the products of conversion lignin monomers was studied. The main ways of the transformation of monophenols were found to be hydrogenation of the aromatic ring, deoxygenation and hydrogenation of the resulting aromatic hydrocarbons. The rate of component consumption during the conversion of the mixture was found to be lower than that for the individual substrates. A study of the process temperature and the partial pressure of hydrogen on the conversion of a mixture of substrates was carried out. Aromatic hydrocarbons were chosen as target products in this work. The optimal conditions for the conversion of a mixture of substrates in terms of process rate and selectivity to aromatic hydrocarbons were estimated to be a temperature of 280°C, a partial pressure of hydrogen 3.0 MPa.
Keywords
Full Text

About the authors
A. A. Stepacheva
Tver State Technical University
Author for correspondence.
Email: a.a.stepacheva@mail.ru
Russian Federation, Tver
E. D. Tereshina
Tver State Technical University
Email: a.a.stepacheva@mail.ru
Russian Federation, Tver
A. A. Tarasova
Tver State Technical University
Email: a.a.stepacheva@mail.ru
Russian Federation, Tver
M. V. Akinchits
Tver State Technical University
Email: a.a.stepacheva@mail.ru
Russian Federation, Tver
E. A. Ershova
Tver State Technical University
Email: a.a.stepacheva@mail.ru
Russian Federation, Tver
S. D. Emelyanova
Tver State Technical University
Email: a.a.stepacheva@mail.ru
Russian Federation, Tver
V. G. Matveeva
Tver State Technical University
Email: a.a.stepacheva@mail.ru
Russian Federation, Tver
M. G. Sulman
Tver State Technical University
Email: a.a.stepacheva@mail.ru
Russian Federation, Tver
References
- Yan P., Wang H., Liao Y., Wang C. // Renew. Sustain. Energy Rev. 2023. V. 178. P. Art. 113219.
- Jing Y., Guo Y., Xia Q., Liu X., Wang Y. // Chem. 2019. V. 5. № 10. P. 2520.
- Stocker M. // Angew. Chem. Int. Ed. 2008. V. 47. № 48. P. 9200.
- Sun Z., Bottari G., Afanasenko A., Stuart M.C.A., Deuss P.J., Fridrich B., Barta K. // Nature Catal. 2018. V. 1. P. 82.
- Передерий С. // ЛесПромИнформ. 2021. Т. 157. № 3. С. 108.
- Симонова В.В., Шендрик Т.Г., Кузнецов Б.Н. // Журнал Сибирского Федерального Университета. Химия. 2010. Т. 4. № 3. С. 340.
- Gillet S., Aguedo M., Petitjean L., Morais A.R.C., da Costa Lopes A.M., Lukasik R.M., Anastas P.T. // Green Chem. 2017. V. 19. P. 4200.
- Размер рынка лигнина, доля. Прогнозный отчет, 2024-2032. https://www.gminsights.com/ru/industry-analysis/lignin-market
- Jing Y., Dong L., Guo Y., Liu X., Wang Y. // ChemSusChem. 2019. V. 13. № 17. P. 4181.
- Schutyser W., Renders T., Van den Bosch S., Koelewijin S.F., Beckman G.T., Sels B.F. // Chem. Soc. Rev. 2018. V. 47. P. 852.
- Карманов А.П., Монаков Ю.Б. // Успехи химии. 2003. Т. 72. № 8. С. 797.
- Ninomiya K., Ochiai K., Eguchi M., Kuroda K., Tsuge Y., Ogino C., Taima T., Takahashi K. // Ind. Crops Prod. 2018. V. 111. P. 457.
- Wan Z., Zhang H., Niu M., Guo Y., Li H. // Int. J. Biol. Macromol. 2024. V. 272. Part 1. Art. 132922.
- Mukesh C., Huang G., Qin H., Liu Y., Ji X. // Biomass & Bioenergy. 2024. V. 188. Art. 107305.
- Lian P., Liu S., Ma Z., Wang X., Han Y. // Ind. Crops Prod. 2024. V. 212. Art. 118376.
- Кузнецов Б.Н., Чесноков Н.В. // Химия в интересах устойчивого развития. 2018. Т. 26. С. 305.
- Bhatia S.K., Gurav R., Choi T.R., Han Y.H., Park Y.L., Park J.Y., Jung H.R., Yang S.Y., Song H.S., Kim S.H., Choi K.Y., Yang U.H. // Biores. Technol. 2019. V. 289. Art. 121704.
- Hou S., Shen B., Zhang D., Li R., Xu X., Wang K., Lai C., Yong Q. // Biores. Technol. 2022. V. 362. P. 127825.
- Knezevic A., Milovanovic I., Stajic M., Loncar N., Brceski I., Vukojevic J., Cilerdzic J. // Biores. Technol. 2013. V. 138. P. 117.
- Liu E., Segato F., Prade R.A., Wilkins M.R. // Biores. Technol. 2021. V. 338. Art. 125564.
- Долгоносов Б.М., Губернаторова Т.Н. Механизмы и кинетика деструкции органического вещества в водной среде. Москва: URSS. 2011. 208 с.
- Феофилова Е.П., Мысякина И.С. // Прикладная биохимия и микробиология. 2016. Т. 52. № 6. С. 559.
- Ильясов С.Г., Черкашин В.А., Сакович Г.В. // Химия растительного сырья. 2013. Т. 4. С. 21.
- Арапова О.В., Чистяков А.В., Цодиков М.В., Моисеев И.И. // Нефтехимия. 2020. Т. 60. № 3. С. 251.
- Куликова М.В., Крылова А.Ю., Крысанова К.О., Куликов А.Б., Максимов А.Л. // Наногетерогенный катализ. 2023. Т. 8. № 1. С. 3.
- Perez E., Abad-Fernandez N., Lourencon T., Balakshin M., Sixta H., Cocero M.J. // Biomass & Bioenergy. 2022. V. 163. Art. 106536.
- Patil V., Adhikari S., Cross P., Jahromi H. // Renew. Sustain. Energy Rev. 2020. V. 133. Art. 110359.
- Akiya N., Savage P.E. // Chem. Rev. 2002. V. 102. № 8. P. 2725.
- Hu J., Zhang S., Xiao R., Jiang X., Wang Y., Sun Y., Lu P. // Biores. Technol. 2019. V. 279. P. 228.
- Kong X., Liu C., Xu W., Han Y., Fan Y., Lei M., Li M., Xiao R. // Fuel Proces. Technol. 2021. V. 218. Art. 106869.
- Shen D., Liu N., Dong C., Xiao R., Gu S. // Chem. Eng. J. 2015. V. 270. P. 641.
- Kim J.Y., Oh S., Hwang H., Cho T.S., Choi I.G., Choi J.W. // Chemosphere. 2013. V. 93. № 9. P. 1755.
- Nielsen J.B., Jensen A., Madsen L.R., Larsen F.H., Felby C., Jensen A.D. // Energy & Fuels. 2017. V. 31. № 7. P. 7223.
- Huang X., Koranyi T.I., Boot M.D., Hensen E.J.M. // Green Chem. 2015. V. 17. P. 7359.
- Phongpreecha T., Christy K.F., Singh S.K., Hao P., Hodge D.B. // Biores. Technol. 2020. V. 316. Art. 123907.
- Jiang B., Hu J., Qiao Y., Jiang X., Lu P. // Energy & Fuels. 2019. V. 33. P. 8786.
- Sang Y., Wu Q., Liu Q., Bai Y., Chen H., Li Y. // Energy & Fuels. 2021. V. 35. № 1. P. 519.
- Yang X., Feng M., Choi J.S., Meyer H.M., Yang B. // Fuel. 2019. V. 244. P. 528.
- Shu R., Xu Y., Ma L., Zhang Q., Wang C., Chen Y. // Chem. Eng. J. 2018. V. 338. P. 457.
- Kristianto I., Limarta S.O., Lee H., Ha J.M., Suh D.J., Jae J. // Biores. Technol. 2017. V. 234. P. 424.
- Huang S., Mahmood N., Zhang Y., Tymchyshyn M., Yuan Z., Xu C.C. // Fuel. 2017. V. 209. P. 579.
- Li L., Kong J., Zhang H., Liu S., Zheng Q., Zhang Y., Ma H., He H., Long J., Li X. // Appl. Catal. B: Environ. 2020. V. 279. № 15. Art. 119343.
- Deng W., Zhang H., Wu X., Li R., Zhang Q., Wang Y. // Green Chem. 2015. V. 17. P. 5009.
- Tarabanko V.E., Kaygorodov K.L., Kazachenko A.S., Smirnova M.A., Chelbina Y.V., Kosivtsov Y., Golubkov V.A. // Catalysts. 2023. V. 13. № 12. P. 1490.
- Stepacheva A.A., Manaenkov O.V., Markova M.E., Sidorov A.I., Bykov A.V., Sulman M.G., Kiwi-Minsker L. // Catalysts. 2023. V. 13. № 5. P. 856.
- Chen H.-Y.T., Pacchioni G. // ChemCatChem. 2016. V. 8. P. 2492.
- Kirkwood K., Jackson S.D. // Top. Catal. 2021. V. 64. P. 934.
- Peters J.E., Carpenter J.R., Dayton D.C. // Energy & Fuels. 2015. V. 2. P. 909.
- Venkatesan K., Krishna J.V.J., Anjana S., Selvam P., Vinu R. // Catal. Commun. 2021. V. 148. Art. 106164.
- Li X., Liu J., Zhang J., Liu B., Ma W., Wang C., Chen G. // Cellulose. 2019. V. 26. P. 8301.
Supplementary files
