Effect of modification method of TiO2 nanotubes with Cu2O on their activity in photoelectrochemical water splitting

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

TiO2 nanotube array electrodes for the photoelectrochemical process of water splitting were modified with Cu2O, p-type semiconductor (p-Cu2O). By employing the cyclic voltammetry (CV) method to deposit p-Cu2O nanoparticles, a more uniform particle distribution was achieved over the inner and outer surfaces of TiO2 nanotubes. The measurements of incident photon-to-current conversion efficiency (IPCE) in the range of 365-660 nm demonstrated that the proposed method significantly enhance photoactivity in the visible light region compared to the potentiostatic deposition method. The IPCE value was 0.18% at a wavelength of 523 nm, which was 7 and 45 times higher than for the potentiostatic modified and pristine samples, respectively. Under continuous illumination with visible light at a wavelength of 523 nm and a potential of 0.2 V (Ag/AgCl (sat.)), the transition from Cu2O to CuO was observed for 5 hours, accompanied by a decrease in photocurrent density.

Full Text

Restricted Access

About the authors

N. A. Zos’ko

Institute of Chemistry and Chemical Technology, FRC KSC SB RAS

Author for correspondence.
Email: rtkm.1@mail.ru
Russian Federation, Akademgorodok, 50/24, Krasnoyarsk, 660036

A. S. Aleksandrovsky

L.V. Kirensky Institute of Physics, FRC KSC SB RAS; Siberian Federal University

Email: rtkm.1@mail.ru
Russian Federation, Akademgorodok, 50/38, Krasnoyarsk, 660036; Svobodny pr., 79, Krasnoyarsk, 660041

T. A. Kenova

Institute of Chemistry and Chemical Technology, FRC KSC SB RAS

Email: kta@icct.ru
Russian Federation, Akademgorodok, 50/24, Krasnoyarsk, 660036

M. A. Gerasimova

Siberian Federal University

Email: rtkm.1@mail.ru
Russian Federation, Svobodny pr., 79, Krasnoyarsk, 660041

N. G. Maksimov

Institute of Chemistry and Chemical Technology, FRC KSC SB RAS

Email: rtkm.1@mail.ru
Russian Federation, Akademgorodok, 50/24, Krasnoyarsk, 660036

A. M. Zhizhaev

Institute of Chemistry and Chemical Technology, FRC KSC SB RAS

Email: rtkm.1@mail.ru
Russian Federation, Akademgorodok, 50/24, Krasnoyarsk, 660036

O. P. Taran

Institute of Chemistry and Chemical Technology, FRC KSC SB RAS; Siberian Federal University

Email: rtkm.1@mail.ru
Russian Federation, Akademgorodok, 50/24, Krasnoyarsk, 660036; Svobodny pr., 79, Krasnoyarsk, 660041

References

  1. Huang C.-W., Nguyen B.-S., Wu J.C.S., Nguyen V.-H. // Int. J. Hydrogen Energy. 2020. V. 45. № 36. P. 18144. https://doi.org/10.1016/j.ijhydene.2019.08.121
  2. Perathoner S., Centi G. // Stud. Surf. Sci. Catal. 2020. V. 179. P. 415. https://doi.org/10.1016/B978-0-444-64337-7.00021-5
  3. Thakur A., Ghosh D., Devi P., Kim K.-H., Kumar P. // Chem. Eng. J. 2020. V. 397. 125415. https://doi.org/10.1016/j.cej.2020.125415
  4. Berger T., Monllor-Satoca D., Jankulovska M., Lana-Villarreal T., Gómez R. // Chemphyschem. 2012. V. 13. № 12. P. 2824. https://doi.org/10.1002/cphc.201200073
  5. Qiu Y., Pan Z., Chen H., Ye D., Guo L., Fan Z., Yang S. // Sci. Bull. 2019. V. 64. № 18. P. 1348. https://doi.org/10.1016/j.scib.2019.07.017
  6. Macak J.M., Tsuchiya H., Ghicov A., Yasuda K., Hahn R., Bauer S., Schmuki P. // Curr. Opin. Solid State Mater. Sci. 2007. V. 11. № 1. P. 3. https://doi.org/10.1016/j.cossms.2007.08.004
  7. Wawrzyniak J., Grochowska K., Karczewski J., Kupracz P., Ryl J., Dołęga A., Siuzdak K. // Surf. Coat. Technol. 2020. V. 389. 125628. https://doi.org/10.1016/j.surfcoat.2020.125628
  8. Ampelli C., Tavella F., Perathoner S., Centi G. // Chem. Eng. J. 2017. V. 320. P. 352. https://doi.org/10.1016/j.cej.2017.03.066
  9. Hou X., Jiang S., Li Y. // Appl. Catal. B: Environ. 2019. V. 258. 117949. https://doi.org/10.1016/j.apcatb.2019.117949
  10. Zhu L., Ma H., Han H., Fu Y., Ma C., Yu Z., Dong X. // RSC Adv. 2018. V. 8. № 34. P. 18992. http://dx.doi.org/10.1039/C8RA02983K
  11. Szkoda M., Trzciński K., Nowak A.P., Coy E., Wicikowski L., Łapiński M., Siuzdak K., Lisowska-Oleksiak A. // Electrochim. Acta. 2018. V. 278. P. 13. https://doi.org/10.1016/j.electacta.2018.05.015
  12. de Brito J.F., Tavella F., Genovese C., Ampelli C., Zanoni M.V.B., Centi G., Perathoner S. // Appl. Catal. B: Environ. 2018. V. 224. P. 136. https://doi.org/10.1016/j.apcatb.2017.09.071
  13. Wang C.-C., Chou C.-Y., Yi S.-R., Chen H.-D. // Int. J. Hydrogen Energy. 2019. V. 44. № 54. P. 28685. https://doi.org/10.1016/j.ijhydene.2019.09.133
  14. Tsui L.-K., Zangari G. // Electrochim. Acta. 2014. V. 128. P. 341. https://doi.org/10.1016/j.electacta.2013.09.150
  15. Rousseau R., Glezakou V.-A., Selloni A. // Nat. Rev. Mater. 2020. V. 5. № 6. P. 460. https://doi.org/10.1038/s41578-020-0198-9
  16. Berger T., Lana-Villarreal T., Monllor-Satoca D., Gómez R. // Electrochem. Commun. 2006. V. 8. P. 1713. https://doi.org/10.1016/j.elecom.2006.08.006
  17. Kim C., Kim S., Hong S.P., Lee J., Yoon J. // Phys. Chem. Chem. Phys. 2016. V. 18. № 21. P. 14370. http://dx.doi.org/10.1039/C6CP01799A
  18. Trang T.N.Q., Tu L.T.N., Man T.V., Mathesh M., Nam N.D., Thu V.T.H. // Composites, Part B. 2019. V. 174. 106969. https://doi.org/10.1016/j.compositesb.2019.106969
  19. Mor G.K., Varghese O.K., Wilke R.H.T., Sharma S., Shankar K., Latempa T.J., Choi K.-S., Grimes C.A. // Nano Lett. 2008. V. 8. № 7. P. 1906. https://doi.org/10.1021/nl080572y
  20. de Jongh P.E., Vanmaekelbergh D., Kelly J.J. // Chem. Commun. 1999. V. 12. P. 1069. http://dx.doi.org/10.1039/A901232J
  21. Garuthara R., Siripala W. // J. Lumin. 2006. V. 121. № 1. P. 173. https://doi.org/10.1016/j.jlumin.2005.11.010
  22. Han X., Han K., Tao M. // Electrochem. Solid-State Lett. 2009. V. 12. № 4. P. H89. https://doi.org/10.1149/1.3065976
  23. Qin Y., Zhang J., Wang Y., Shu X., Yu C., Cui J., Zheng H., Zhang Y., Wu Y. // RSC Adv. 2016. V. 6. P. 47669. http://dx.doi.org/10.1039/C6RA08891K
  24. Zhang J., Wang Y., Yu C., Shu X., Jiang L., Cui J., Chen Z., Xie T., Wu Y. // New J. Chem. 2014. V. 38. № 10. P. 4975. https://doi.org/10.1039/C4NJ00787E
  25. Tsui L.-K., Wu L., Swami N., Zangari G. // ECS Electrochem. Lett. 2012. V. 1. № 2. P. D15. https://dx.doi.org/10.1149/2.008202eel
  26. Zhao L., Dong W., Zheng F., Fang L., Shen M. // Electrochim. Acta. 2012. V. 80. P. 354. https://doi.org/10.1016/j.electacta.2012.07.034
  27. Koiki B.A., Orimolade B.O., Zwane B.N., Nkosi D., Mabuba N., Arotiba O.A. // Electrochim. Acta. 2020. V. 340. 135944. https://doi.org/10.1016/j.electacta.2020.135944
  28. Santamaria M., Conigliaro G., di Franco F., di Quarto F. // Electrochim. Acta. 2014. V. 144. P. 315. https://doi.org/10.1016/j.electacta.2014.07.154
  29. Tsui L.-K., Zangari G. // Electrochim. Acta. 2013. V. 100. P. 220. https://doi.org/10.1016/j.electacta.2012.07.058
  30. Liu Y., Zhou H., Li J., Chen H., Li D., Zhou B., Cai W. // Nano Micro Lett. 2010. V. 2. № 4. P. 277. https://doi.org/10.1007/BF03353855
  31. Lu H., Hu J., Zhang S., Long M., Tang A. // J. Electroanal. Chem. 2023. V. 949. 117842. https://doi.org/10.1016/j.jelechem.2023.117842
  32. Zos’ko N.A., Aleksandrovsky A.S., Kenova T.A., Gerasimova M.A., Maksimov N.G., Taran O.P. // ChemPhotoChem. 2023. V. 7. № 9. e202300100. https://doi.org/10.1002/cptc.202300100
  33. Wu L., Tsui L.-K., Swami N., Zangari G. // J. Phys. Chem. C. 2010. V. 114. № 26. P. 11551. https://doi.org/10.1021/jp103437y
  34. Siegfried M.J., Choi K.-S. // J. Electrochem. Soc. 2007. V. 154. № 12. P. D674. https://dx.doi.org/10.1149/1.2789394
  35. Stiedl J., Green S., Chassé T., Rebner K. // Appl. Spectrosc. 2018. V. 73. P. 59. https://doi.org/10.1177/0003702818797959
  36. Sun Y., Yan K.-P. // Int. J. Hydrogen Energy. 2014. V. 39. № 22. P. 11368. https://doi.org/10.1016/j.ijhydene.2014.05.115
  37. Zhu H., Zhao M., Zhou J., Li W., Wang H., Xu Z., Lu L., Pei L., Shi Z., Yan S., Li Z., Zou Z. // Appl. Catal. B: Environ. 2018. V. 234. P. 100. https://doi.org/10.1016/j.apcatb.2018.04.040
  38. Zhang Z., Hedhili M.N., Zhu H., Wang P. // Phys. Chem. Chem. Phys. 2013. V. 15. № 37. P. 15637. http://dx.doi.org/10.1039/C3CP52759J
  39. Tavella F., Ampelli C., Frusteri L., Frusteri F., Perathoner S., Centi G. // Catal. Today. 2018. V. 304. P. 190. https://doi.org/10.1016/j.cattod.2017.08.036
  40. Zhou X., Liu N., Schmuki P. // ACS Catal. 2017. V. 7. № 5. P. 3210. https://doi.org/10.1021/acscatal.6b03709
  41. Hou Y., Li X.Y., Zhao Q.D., Quan X., Chen G.H. // Appl. Phys. Lett. 2009. V. 95. № 9. 093108. https://doi.org/10.1063/1.3224181
  42. Musselman K.P., Wisnet A., Iza D.C., Hesse H.C., Scheu C., MacManus-Driscoll J.L., Schmidt-Mende L. // Adv. Mater. 2010. V. 22. № 35. P. E254. https://doi.org/10.1002/adma.201001455
  43. Chang S.-S., Lee H.-J., Park H.J. // Ceram. Int. 2005. V. 31. № 3. P. 411. https://doi.org/10.1016/j.ceramint.2004.05.027

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SEM images of TiO2 samples: a – TiO2NT; b – CV-Cu2O/TiO2NT; c – MP-Cu2O/TiO2NT (insets: cross-section of TiO2 film); d – XRD patterns of CV-Cu2O/TiO2NT before (1) and after (2) irradiation.

Download (4MB)
3. Fig. 2. SEM and EDS images for CV-Cu2O/TiO2NT (a) and MP-Cu2O/TiO2NT (b) samples.

Download (5MB)
4. Fig. 3. Diffuse reflectance spectra (a) and Kubelka–Munk function (b) for TiO2NT, CV-Cu2O/TiO2NT, and MP-Cu2O/TiO2NT samples.

Download (1MB)
5. Fig. 4. Linear sweep voltammetry at 10 mV/s (solid line – photocurrent, dashed line – dark current) (a) and chronoamperometry at 0.2 V (Ag/AgCl (sat.)) (b) of TiO2NT, CV-Cu2O/TiO2NT, and MP-Cu2O/TiO2NT samples under visible light irradiation with a wavelength of 523 nm.

Download (1MB)
6. Fig. 5. IPCE spectra of TiO2NT, CV-Cu2O/TiO2NT, and MP-Cu2O/TiO2NT samples at E = 0.2 V (Ag/AgCl (sat.)).

Download (471KB)
7. Fig. 6. Photoluminescence spectra for TiO2NT (a), CV-Cu2O/TiO2NT (b), and MP-Cu2O/TiO2NT (c) samples. PL – photoluminescence, PLE – photoluminescence excitation spectrum, exc. – excitation, em. – emission.

Download (1MB)
8. Fig. 7. Dependence of photocurrent density of water splitting on TiO2NT and CV-Cu2O/TiO2NT samples on visible light irradiation time (λ = 523 nm) at E = 0.2 V (Ag/AgCl (sat.)).

Download (400KB)

Copyright (c) 2025 Russian Academy of Sciences