The effect of S-Nitrosoglutathione on the amount and activity of erythroid nuclear factor Nrf2 in human hepatocellular carcinoma cells
- 作者: Abalenikhina Y.V.1, Suchkova O.N.1, Kostyukova E.V.1, Shchulkin A.V.1, Topunov A.F.2
-
隶属关系:
- Ryazan State Medical University named after Academician I.P. Pavlov
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
- 期: 卷 61, 编号 3 (2025)
- 页面: 236-248
- 栏目: Articles
- URL: https://ruspoj.com/0555-1099/article/view/689271
- DOI: https://doi.org/10.31857/S0555109925030021
- EDN: https://elibrary.ru/FNJZAS
- ID: 689271
如何引用文章
详细
S-nitrosoglutathione (GSNO) is an endogenous donor of nitric oxide (NO), which, at the same time, can act both as a signaling molecule and a toxic agent, forming active forms of nitrogen. The purpose of this work was to study the mechanism of NO participation in the regulation of erythroid nuclear factor 2 (Nrf2) functioning, which is a redox-sensitive transcription factor. It was shown that when GSNO was exposed to human hepatocellular carcinoma cells (HepG2), the level of intracellular NO increased dose-dependently during incubation for 24 and 72 hours. The maximum increase of NO level at 100 mM concentration led to decrease of the amount of non-protein SH groups, to maximum increase of 3-nitrothyrosine and bityrosine levels, which contributed to the decline of cell viability. The NO donor — S-nitrosoglutation activated Nrf2 during exposure for 24 hours, most likely due to nitrosylation of Keap1 protein, and at 72 hours not only activated Nrf2, but also led to an increase in its amount. This process was carried out through NO-cGMP signaling pathway. Activation of Nrf2 is a key factor in protecting cells from the toxic effects of nitrosative stress products.
全文:

作者简介
Yu. Abalenikhina
Ryazan State Medical University named after Academician I.P. Pavlov
编辑信件的主要联系方式.
Email: abalenihina88@mail.ru
俄罗斯联邦, Ryazan, 390026
O. Suchkova
Ryazan State Medical University named after Academician I.P. Pavlov
Email: abalenihina88@mail.ru
俄罗斯联邦, Ryazan, 390026
E. Kostyukova
Ryazan State Medical University named after Academician I.P. Pavlov
Email: abalenihina88@mail.ru
俄罗斯联邦, Ryazan, 390026
A. Shchulkin
Ryazan State Medical University named after Academician I.P. Pavlov
Email: abalenihina88@mail.ru
俄罗斯联邦, Ryazan, 390026
A. Topunov
Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: abalenihina88@mail.ru
俄罗斯联邦, Moscow, 119071
参考
- Thomas D.D., Ridnour L.A., Isenberg J.S., Flores-Santana W., Switzer C.H., Donzelli S. et al. // Free Radic. Biol. Med. 2008. V. 45. № 1. P. 18–31. https://doi.org/10.1016/j.freeradbiomed.2008.03.020
- Сучкова О.Н., Абаленихина Ю.В., Костюкова Е.В., Щулькин А.В., Кочанова П.Д., Гаджиева Ф.Т. и др. // Вопросы биологической, медицинской и фармацевтической химии. 2024. Т. 9. № 27. С. 50–56. https://doi.org/10.29296/25877313-2024-09-07
- Калинин Р.Е., Сучков И.А., Мжаванадзе Н.Д., Короткова Н В., Климентова Э.А., Поваров В.О. // Наука молодых (Eruditio Juvenium). 2021. Т. 9. № 3. С. 407–414. https://doi.org/10.23888/HMJ202193407-414
- Abalenikhina Yu.V., Kosmachevskaya O.V., Topunov A.F. // Appl. Biochem. Microbiol. 2020. V. 56. № 6. P. 611–623. https://doi.org/10.1134/S0003683820060022
- He F., Ru X., Wen T. // Int. J. Mol. Sci. 2020. V. 21. № 13. e4777. https://doi.org/10.3390/ijms21134777
- Турпаев К.Т. // Биохимия. 2013. Т. 78. № 2. С. 147–166
- McMahon M., Lamont D.J., Beattie K.A., Hayes J.D. // Proc. Natl. Acad. Sci. USA. 2010. V. 107. № 44. Р. 18838–18843. https://doi.org/10.1073/pnas.1007387107
- Fourquet S., Guerois R., Biard D., Toledano M.B // J. Biol. Chem. 2010. V. 285. № 11. С. 8463–8471. https://doi.org/10.1074/jbc. М109.051714
- Um H.-C., Jang J.-H., Kim D.-H., Lee C., Surh Y.-J. // Nitric Oxide. 2011. V. 25. № 2. Р. 161–168. https://doi.org/10.1016/j.niox.2011.06.001
- Cortese-Krott M.M., Pullmann D., Feelisch M. // Pharmacol. Res. 2016. V. 113. Pt. A. Р. 490–499. https://doi.org/10.1016/j.phrs.2016.09.022
- Sun Z., Zhang S., Chan J.Y., Zhang D.D. // Mol. Cell. Biol. 2007. V. 27. № 18. Р. 6334-6349. https://doi.org/10.1128/MCB.00630-07
- Kim S.-R., Seong K.-J., Kim W.-J., Jung J.-Y. // Int. J. Mol. Sci. 2022. V. 23. № 7. e4004. https://doi.org/10.3390/ijms23074004
- Gorska-Arcisz M., Popeda M., Braun M., Piasecka D., Nowak J.I., Kitowska K. et al. // Cell. Mol. Biol. Lett. 2024. V. 29. № 1. e71. https://doi.org/10.1186/s11658-024-00586-6
- Menegon S., Columbano A., Giordano S. // Trends Mol. Med. 2016. V. 22. № 7. P. 578–593. https://doi.org/10.1016/j.molmed.2016.05.002
- Gjorgieva Ackova D., Maksimova V., Smilkov K., Buttari B., Arese M., Saso L. // Pharmaceuticals. 2023. V. 16. № 6. e850. https://doi.org/10.3390/ph16060850
- Kryszczuk M., Kowalczuk O. // Arch. Biochem. Biophys. 2022. V. 15. № 730. e109417. https://doi.org/10.1016/j.abb.2022.109417
- Kalantari L., Ghotbabadi Z.R., Gholipour A., Ehymayed H.M., Najafiyan B., Amirlou P. et al. // Cell. Commun. Signal. 2023. V. 21. № 1. e318. https://doi.org/10.1186/s12964-023-01351-6
- Song Y., Lu Q., Jiang D., Lan X. // Eur. J. Nucl. Med. Mol. Imaging. 2023. V. 50. № 3. Р. 639–641. https://doi.org/10.1007/s00259-022-06043-w
- Hwang T.L. // Br. J. Pharmacol. 1998. V. 125. № 6. Р. 1158–1163.
- Bollong M.J., Yun H., Sherwood L., Woods A.K., Lairson L.L., Schultz P.G. // ACS Chem. Biol. 2015. V. 10. № 10. Р. 2193–2198. https://doi.org/10.1021/acschembio.5b00448
- Balcerczyk A., Soszynski M., Bartosz G. // Free Radic. Biol. Med. 2005. V. 39. № 3. Р. 327–335. https://doi.org/10.1016/j.freeradbiomed.2005.03.017
- Kumar P., Nagarajan A., Uchil P.D. // Cold Spring Harb. Protoc. 2018. V. 2018. № 6. https://doi.org/10.1101/pdb.prot095505
- Kosmachevskaya O.V., Nasybullina E.I., Shumaev K.B., Novikova N.N., Topunov A.F. // Int. J. Mol. Sci. 2021. V. 22. № 24. e13649. https://doi.org/10.3390/ijms222413649
- Kojima S., Nakayama K., Ishida H. // J. Radiat. Res. 2024. V. 45. № 1. Р. 33–39. https://doi.org/10.1269/jrr.45.33
- Pravkin S.K., Yakusheva E.N., Uzbekova D.G. // Bull. Exp. Biol. Med. 2013. V. 156. № 2. P. 220-223. https://doi.org/1010.1007/s10517-013-2315-x
- Li W., Wang D., Lao K.U., Wang X. // ACS Biomater. Sci. Eng. 2023. V. 13. № 9. P. 1694–1705. https://doi.org/10.1021/acsbiomaterials.2c01284
- Broniowska K.A., Diers A.R., Hogg N. // Biochim. Biophys. Acta. 2013. V. 1830. № 5. Р. 3173–3181. https://doi.org/10.1016/j.bbagen.2013.02.004
- Ramachandran N., Root P., Jiang X-M., Hogg P.J., Mutus B. // Proc. Natl. Acad. Sci. USA. 2001. V. 98. № 17. Р. 9539–9544.
- Ferrer-Sueta G., Campolo N., Trujillo M., Bartesaghi S., Carballal S., Romero N. et al. // Chem. Rev. 2018. V. 118. № 3. Р. 1338–1408.
- Boer T.R., Palomino R.I., Mascharak P.K. // Med. One. 2019. V. 4. e190003. https://doi.org/10.20900/mo.20190003
- Yu J., Zhao Y., Li B., Sun L., Huo H. // J. Biochem. Mol. Toxicol. 2012. V. 26. № 7. Р. 264–269. https://doi.org/10.1002/jbt.21417
- Абаленихина Ю.В., Ерохина П.Д., Сеидкулиева А.А., Завьялова О.А., Щулькин А.В., Якушева Е.Н. // Российский медико-биологический вестник им. академика И.П. Павлова. 2022. Т. 30. № 3. С. 295–304. https://doi.org/10.17816/PAVLOVJ105574
- Xu W., Liu L.Z., Loizidou M., Ahmed M., Charles I.G. // Cell. Res. 2002. V. 12. № 5–6. P. 311–320. https://doi.org/10.1038/sj.cr.7290133
补充文件
