The influence of low-alloy pipe steel hydrogen saturation conditions on the sorption process
- Authors: Pyshmintsev I.Y.1, Khatkevich V.M.1, Khudnev A.A.1
-
Affiliations:
- TMK RESEARCH, LLC
- Issue: No 1 (2025)
- Pages: 41—50
- Section: Articles
- URL: https://ruspoj.com/0869-5733/article/view/686006
- DOI: https://doi.org/10.31857/S0869573325014150
- ID: 686006
Cite item
Abstract
The kinetics of hydrogen sorption and desorption during electrolytic hydrogen saturation of steel grade 09G2C has been studied. A method for determining the effective hydrogen diffusion coefficient and a method for calculating the concentration profile over the section of a cylindrical sample are proposed. It is shown that the equilibrium concentration of hydrogen at a pressure of 25 MPa in the test material without applied stresses does not exceed 1 ppm. The influence of the stress-strain state on the sorption process during hydrogen saturation from the gas phase has been studied. A method is proposed for quantifying the equilibrium hydrogen concentration depending on pressure and the level of tensile stresses, taking into account influence of plastic deformation.
About the authors
I. Yu. Pyshmintsev
TMK RESEARCH, LLC
Author for correspondence.
Email: igor.pyshmintsev@tmk-group.com
Russian Federation, Moscow
V. M. Khatkevich
TMK RESEARCH, LLC
Email: v.khatkevich@tmk-group.com
Russian Federation, Moscow
A. A. Khudnev
TMK RESEARCH, LLC
Email: a.khudnev@tmk-group.com
Russian Federation, Moscow
References
- Johnson, W. On some remarkable changes produced in iron and steel by the action of hydrogen and acids / W. Johnson // Proceedings of the royal society of London. 1874. V.23. P.169–178.
- Fremy, M.E. On the composition of cast iron and steel / M.E. Fremy // J. Franklin Inst. 1861. V. 72. № 5. P. 342–346.
- Мороз, Л.С. Водородная хрупкость металлов / Л.С. Мороз, Б.Б. Чечулин. – М.: Металлургия. 1967. Т. 275. – (Moroz L.S., Chechulin B.B. “Hydrogen brittleness of metals”. –M.: Metallurgiya, 1967. V. 275.)
- Гельд, П.В. Водород в металлах и сплавах / П.В. Гельд., Р.А. Рябов. – М.: Металлургия, 1974. – (Geld P.V., Ryabov. R.A. “Hydrogen in metals and alloys”. – М.: Metallurgiya, 1974.)
- Heidersbach, R. Metallurgy and corrosion control in oil and gas production / R.Heidersbach. – [S.l.]: John Wiley & Sons, 2018.
- Герасимова, В.В. Водородная хрупкость корпусных сталей / В.В. Герасимова, Е.Ю. Ривкин, – [Б.м.: б.и.], 1976. – (Gerasimova V.V., Rivkin E.Yu. “Hydrogen brittleness of nuclear reactor vessel steels”. – [S.l.: s.n.], 1976.)
- Ушков, С.С. Конструкционные материалы для глубоководных аппаратов / С.С. Ушков, Г.И. Николаев, В.И. Михайлов [и др.] // Судостроение. 2004. №. 5. С.111–114. – (S. S. Ushkov, G.I. Nikolaev, V.I. Mihajlov, et al. “Structural materials for deep-sea vehicles” // Sudostroenie. 2004. №. 5. P. 111–114.)
- Муравьев, К.А. Влияние водорода на сопротивление образованию трещин в сварных соединениях судостроительных сталей/ К.А.Муравьев // Технические науки – от теории к практике. 2012. №. 6-1. С. 54–59. – (Murav`ev K.A. “The effect of hydrogen on crack resistance in welded joints of shipbuilding steels” //Tekhnicheskie nauki – ot teorii k praktike. 2012. №. 6-1. P. 54–59.)
- Холодный, В.И. Способ защиты от разрушений энергетических установок, использующих водород в качестве рабочего тела / В.И. Холодный, Н.С. Гончаров, Н.К Мешков [и др.]. – [Б.м.: б.и.], 1997. – (V.I. Holodnyj, N.S. Goncharov, N.K. Meshkov, et al. “A method of protection against destruction of power plants using hydrogen as a propellant”. – [S.l. : s.n.], 1997.)
- Faye, O.A. Critical review on the current technologies for the generation, storage, and transportation of hydrogen / O. Faye, J. Szpunar, U. Eduok // Intern. J. Hydrogen Energy. 2022. V.47. №29. P.13771–13802.
- Godula-Jopek, A. Hydrogen storage technologies: new materials, transport, and infrastructure / A. Godula-Jopek, W. Jehle, J. Wellnitz. – [S.l.]: John Wiley & Sons. 2012.
- Sokolsky, S. Best practices in hydrogen fueling and maintenance facilities for transit agencies / S. Sokolsky, J. Tomic, J.B. Gallo // World Electric Vehicle J. 2016. V. 8. №2. P.553–556.
- Nanninga, N.E. Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments / N.E. Nanninga, Y.S. Levy, E.S. Drexler, et al. // Corros. Sci. 2012. V.59. P.1–9.
- Liu Q. A critical review of the influence of hydrogen on the mechanical properties of medium-strength steels / Liu Q., A. Atrens // Corros. Rev. 2013. V.31. №3–6. P.85–103.
- Barrera, O. Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum / O. Barrera, D. Bombac, Chen Y., et al. // J. Mater. Sci. 2018. V.53. №9. P.6251–6290.
- Pluvinage, G. Pipe networks transporting hydrogen pure or blended with natural gas, design and maintenance / G. Pluvinage, J. Capelle, M.H. Meliani // Eng. Failure Anal. 2019. V.106. Art.104164.
- Яковлев, Ю.А. Модели влияния водорода на механические свойства металлов и сплавов / Ю.А. Яковлев, В.А. Полянский, Ю.С Седова [и др.] // Вест. Перм. нац. иссл. политех. ун-та. Механика. 2020. №3. С. 136–160. – (Yakovlev Yu.A., Polyanskiy V.A., Sedova Yu.S., et al. “Models of hydrogen influence on the mechanical properties of metals and alloys”. PNRPU Mechanics Bul. 2020. №3. P.136–160. doi: 10.15593/perm.mech/2020.3.13.)
- Настич, С.Ю. Влияние газообразного водорода на механические свойства металла труб магистральных газопроводов / С.Ю. Настич, В.А. Лопаткин // Металлург. 2022. №6. С.17–27. – (Nastich S.Yu., Lopatkin V.A. “Influence of gaseous hydrogen on mechanical properties of metal for pipes of main gas pipelines” // Metallurg. 2022. №6. P.17–27.)
- Пумпянский, Д.А. Водородное охрупчивание трубных сталей / Д.А. Пумпянский, И.Ю. Пышминцев, В.М. Хаткевич [и др.] // Металлы. 2023. №3. С.36–46. doi: 10.31857/S0869573323030059. – (Pumpyanskiy D.A., Pyshmintsev I.Yu., Khatkevich V.M. [et al.]. “Hydrogen embrittlement of pipe steels” // Metally. 2023. №3. P.36–46. doi: 10.31857/S0869573323030059.)
- Пумпянский, Д.А. Основы металловедения и технологии производства труб из коррозионно-стойких сталей / Д.А. Пумпянский, И.Ю. Пышминцев, А.В. Выдрин [и др.]. – М.: Металлургиздат, 2023. 682 с.– (Pumpyanskiy D.A., Pyshmintsev I.Yu., Vydrin A.V. [et al.]. l. “Fundamentals of Materials Science and Production Technology of Corrosion-Resistant Steel Pipes”. – Moscow: Metallurgizdat, 2023. 682 p.)
- Ишков, А.Г. Риски использования газотранспортной системы для водородной энергетики / А.Г. Ишков, Н.Б. Нестеров, К.В. Романов [и др.] // Энергетическая политика. 2024. №2 (193). С.56–67. – (Ishkov A.G., Nesterov N.B., Romanov K.V. [et al.]. “Risks of using a gas transportation system for hydrogen energy” // Energeticheskaya politika. 2024. №2 (193). P.56–67.)
- Колачев, Б.А. Водородная хрупкость металлов. – М.: Металлургия, 1985. 216 с. – (Kolachev B.A. “Hydrogen brittleness of metals”. – Moscow: Metallurgiya, 1985. 216 p.)
- Писарев, А.А. Проницаемость водорода через металлы / А.А. Писарев, И.В. Цветков, Е.Д. Маренков [и др.] // МИФИ. 2008. Т.144. – (Pisarev A.A., Cvetkov I.V., Marenkov E.D., et al. “Permeability of hydrogen through metals” // MIFI. 2008. V.144.)
- Pisarev, A.A. Hydrogen adsorption on the surface of metals / A.A. Pisarev // Gaseous hydrogen embrittlement of materials in energy technologies. – [S.l.]: Woodhead Publ. 2012. P. 3–26.
- Nagumo, M. Fundamentals of hydrogen embrittlement / M. Nagumo. – Singapore: Springer, 2016. V.921.
- Michler, T. Assessing the effect of low oxygen concentrations in gaseous hydrogen embrittlement of DIN 1.4301 and 1.1200 steels at high gas pressures / T. Michler, I.E. Boitsov, I. Malkov [et al.]. // Corros. Sci. 2012. V.65. P.169–177.
- Ryu, K.M. Hydrogen behavior in Ti-added reduced activation ferritic-martensitic steels / K.M. Ryu, D.G. Lee, J. Moon, et al. // Metals and Mater. Inter. 2021. V.27. P.425–435.
- Olden, V. Hydrogen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint–Experiments and FE simulations / Olden V., Alvaro A., Akselsen O. M. // Inter. J. Hydrogen Energy. 2012. V.37. №15. P.11474–11486.
- Thomas, A. Hydrogen diffusion and trapping in X70 pipeline steel / A. Thomas, J.A. Szpunar // Inter. J. Hydrogen Energy. 2020. V.45. №3. С.2390–2404.
- Dong C.F. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking / Dong C.F., Liu Z.Y., Li X.G. [et al.] // Inter. J. Hydrogen Energy. 2009. V.34. №24. P.9879–9884.
- Liu Q. Hydrogen trapping in some advanced high strength steels / Liu Q., Venezuela J., Zhang M. et al. // Corros. Sci. 2016. V.111. P.770–785.
- Osabohien, H. Hydrogen permeability and diffusivity in hydrogen transfer pipelines: the effect of hydrogen pressure / H. Osabohien, A. Onshore // Inter. J. Eng. Appl. Sci. Techn. 2024. V.8. Is.12. P.28–43.
- Merson, E.D. The influence of electrolytic hydrogenation current density on the concentration of diffusive active hydrogen in S235JR low-carbon steel / E.D. Merson, V.A. Poluyanov , D.L. Merson, et al. // Frontier Mater. Techn. 2015. №4. P.76–82.
- Bolobov, V. I. Estimation of the influence of compressed hydrogen on the mechanical properties of pipeline steels / V.I. Bolobov, I.U. Latipov, G.G. Popov, et al. // Energies. 2021. V.14. №19. P.6085.
- Pyshmintsev, I.Y. Preliminary assessment of X52 large-diameter pipes suitability for transportation of pressurized pure gaseous hydrogen / I.Y. Pyshmintsev, A.B. Gizatullin, Devyaterikova N.A. [et al.] // Izvestiya. Ferrous Metal. 2023. V.66. №1. P. 35–42.
- Kiuchi K. The solubility and diffusivity of hydrogen in well-annealed and deformed iron / Kiuchi K., McLellan R.B. // Perspectives in Hydrogen in Metals. – [S.l.]: Pergamon, 1986. P.29–52.
- Stopher, M.A. Modelling hydrogen migration and trapping in steels / M.A. Stopher, P. Lang, E. Kozeschnik, P.E.J. Rivera-Diaz-del-Castillo // Mater. Design. 2016. V.106. P.205–215.
- Liu Q. Determination of the hydrogen fugacity during electrolytic charging of steel / Liu Q., Atrens A.D., Shi Z. [et al.] // Corros. Sci. 2014. V.87. P.239–258.
- Michler, T. Review and assessment of the effect of hydrogen gas pressure on the embrittlement of steels in gaseous hydrogen environment / T. Michler, K. Wackermann, F. Schweizer // Metals. 2021. V. 11(4). P.637.
- San Marchi C. Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures / San Marchi C., B.P. Somerday, S.L. Robinson // Inter. J. Hydrogen Energy. 2007. V.32. №1. P.100–116.
- Штремель, М.А. Прочность сплавов: в двух частях. Ч.2. – М.: [б.и.]. 1997. – (Shtremel M.A. “Strength of alloys”. Pt.2. – Moscow: [S.n.], 1997.)
Supplementary files
