The influence of low-alloy pipe steel hydrogen saturation conditions on the sorption process
- Autores: Pyshmintsev I.Y.1, Khatkevich V.M.1, Khudnev A.A.1
-
Afiliações:
- TMK RESEARCH, LLC
- Edição: Nº 1 (2025)
- Páginas: 41—50
- Seção: Articles
- URL: https://ruspoj.com/0869-5733/article/view/686006
- DOI: https://doi.org/10.31857/S0869573325014150
- ID: 686006
Citar
Resumo
The kinetics of hydrogen sorption and desorption during electrolytic hydrogen saturation of steel grade 09G2C has been studied. A method for determining the effective hydrogen diffusion coefficient and a method for calculating the concentration profile over the section of a cylindrical sample are proposed. It is shown that the equilibrium concentration of hydrogen at a pressure of 25 MPa in the test material without applied stresses does not exceed 1 ppm. The influence of the stress-strain state on the sorption process during hydrogen saturation from the gas phase has been studied. A method is proposed for quantifying the equilibrium hydrogen concentration depending on pressure and the level of tensile stresses, taking into account influence of plastic deformation.
Palavras-chave
Sobre autores
I. Pyshmintsev
TMK RESEARCH, LLC
Autor responsável pela correspondência
Email: igor.pyshmintsev@tmk-group.com
Rússia, Moscow
V. Khatkevich
TMK RESEARCH, LLC
Email: v.khatkevich@tmk-group.com
Rússia, Moscow
A. Khudnev
TMK RESEARCH, LLC
Email: a.khudnev@tmk-group.com
Rússia, Moscow
Bibliografia
- Johnson, W. On some remarkable changes produced in iron and steel by the action of hydrogen and acids / W. Johnson // Proceedings of the royal society of London. 1874. V.23. P.169–178.
- Fremy, M.E. On the composition of cast iron and steel / M.E. Fremy // J. Franklin Inst. 1861. V. 72. № 5. P. 342–346.
- Мороз, Л.С. Водородная хрупкость металлов / Л.С. Мороз, Б.Б. Чечулин. – М.: Металлургия. 1967. Т. 275. – (Moroz L.S., Chechulin B.B. “Hydrogen brittleness of metals”. –M.: Metallurgiya, 1967. V. 275.)
- Гельд, П.В. Водород в металлах и сплавах / П.В. Гельд., Р.А. Рябов. – М.: Металлургия, 1974. – (Geld P.V., Ryabov. R.A. “Hydrogen in metals and alloys”. – М.: Metallurgiya, 1974.)
- Heidersbach, R. Metallurgy and corrosion control in oil and gas production / R.Heidersbach. – [S.l.]: John Wiley & Sons, 2018.
- Герасимова, В.В. Водородная хрупкость корпусных сталей / В.В. Герасимова, Е.Ю. Ривкин, – [Б.м.: б.и.], 1976. – (Gerasimova V.V., Rivkin E.Yu. “Hydrogen brittleness of nuclear reactor vessel steels”. – [S.l.: s.n.], 1976.)
- Ушков, С.С. Конструкционные материалы для глубоководных аппаратов / С.С. Ушков, Г.И. Николаев, В.И. Михайлов [и др.] // Судостроение. 2004. №. 5. С.111–114. – (S. S. Ushkov, G.I. Nikolaev, V.I. Mihajlov, et al. “Structural materials for deep-sea vehicles” // Sudostroenie. 2004. №. 5. P. 111–114.)
- Муравьев, К.А. Влияние водорода на сопротивление образованию трещин в сварных соединениях судостроительных сталей/ К.А.Муравьев // Технические науки – от теории к практике. 2012. №. 6-1. С. 54–59. – (Murav`ev K.A. “The effect of hydrogen on crack resistance in welded joints of shipbuilding steels” //Tekhnicheskie nauki – ot teorii k praktike. 2012. №. 6-1. P. 54–59.)
- Холодный, В.И. Способ защиты от разрушений энергетических установок, использующих водород в качестве рабочего тела / В.И. Холодный, Н.С. Гончаров, Н.К Мешков [и др.]. – [Б.м.: б.и.], 1997. – (V.I. Holodnyj, N.S. Goncharov, N.K. Meshkov, et al. “A method of protection against destruction of power plants using hydrogen as a propellant”. – [S.l. : s.n.], 1997.)
- Faye, O.A. Critical review on the current technologies for the generation, storage, and transportation of hydrogen / O. Faye, J. Szpunar, U. Eduok // Intern. J. Hydrogen Energy. 2022. V.47. №29. P.13771–13802.
- Godula-Jopek, A. Hydrogen storage technologies: new materials, transport, and infrastructure / A. Godula-Jopek, W. Jehle, J. Wellnitz. – [S.l.]: John Wiley & Sons. 2012.
- Sokolsky, S. Best practices in hydrogen fueling and maintenance facilities for transit agencies / S. Sokolsky, J. Tomic, J.B. Gallo // World Electric Vehicle J. 2016. V. 8. №2. P.553–556.
- Nanninga, N.E. Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments / N.E. Nanninga, Y.S. Levy, E.S. Drexler, et al. // Corros. Sci. 2012. V.59. P.1–9.
- Liu Q. A critical review of the influence of hydrogen on the mechanical properties of medium-strength steels / Liu Q., A. Atrens // Corros. Rev. 2013. V.31. №3–6. P.85–103.
- Barrera, O. Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum / O. Barrera, D. Bombac, Chen Y., et al. // J. Mater. Sci. 2018. V.53. №9. P.6251–6290.
- Pluvinage, G. Pipe networks transporting hydrogen pure or blended with natural gas, design and maintenance / G. Pluvinage, J. Capelle, M.H. Meliani // Eng. Failure Anal. 2019. V.106. Art.104164.
- Яковлев, Ю.А. Модели влияния водорода на механические свойства металлов и сплавов / Ю.А. Яковлев, В.А. Полянский, Ю.С Седова [и др.] // Вест. Перм. нац. иссл. политех. ун-та. Механика. 2020. №3. С. 136–160. – (Yakovlev Yu.A., Polyanskiy V.A., Sedova Yu.S., et al. “Models of hydrogen influence on the mechanical properties of metals and alloys”. PNRPU Mechanics Bul. 2020. №3. P.136–160. doi: 10.15593/perm.mech/2020.3.13.)
- Настич, С.Ю. Влияние газообразного водорода на механические свойства металла труб магистральных газопроводов / С.Ю. Настич, В.А. Лопаткин // Металлург. 2022. №6. С.17–27. – (Nastich S.Yu., Lopatkin V.A. “Influence of gaseous hydrogen on mechanical properties of metal for pipes of main gas pipelines” // Metallurg. 2022. №6. P.17–27.)
- Пумпянский, Д.А. Водородное охрупчивание трубных сталей / Д.А. Пумпянский, И.Ю. Пышминцев, В.М. Хаткевич [и др.] // Металлы. 2023. №3. С.36–46. doi: 10.31857/S0869573323030059. – (Pumpyanskiy D.A., Pyshmintsev I.Yu., Khatkevich V.M. [et al.]. “Hydrogen embrittlement of pipe steels” // Metally. 2023. №3. P.36–46. doi: 10.31857/S0869573323030059.)
- Пумпянский, Д.А. Основы металловедения и технологии производства труб из коррозионно-стойких сталей / Д.А. Пумпянский, И.Ю. Пышминцев, А.В. Выдрин [и др.]. – М.: Металлургиздат, 2023. 682 с.– (Pumpyanskiy D.A., Pyshmintsev I.Yu., Vydrin A.V. [et al.]. l. “Fundamentals of Materials Science and Production Technology of Corrosion-Resistant Steel Pipes”. – Moscow: Metallurgizdat, 2023. 682 p.)
- Ишков, А.Г. Риски использования газотранспортной системы для водородной энергетики / А.Г. Ишков, Н.Б. Нестеров, К.В. Романов [и др.] // Энергетическая политика. 2024. №2 (193). С.56–67. – (Ishkov A.G., Nesterov N.B., Romanov K.V. [et al.]. “Risks of using a gas transportation system for hydrogen energy” // Energeticheskaya politika. 2024. №2 (193). P.56–67.)
- Колачев, Б.А. Водородная хрупкость металлов. – М.: Металлургия, 1985. 216 с. – (Kolachev B.A. “Hydrogen brittleness of metals”. – Moscow: Metallurgiya, 1985. 216 p.)
- Писарев, А.А. Проницаемость водорода через металлы / А.А. Писарев, И.В. Цветков, Е.Д. Маренков [и др.] // МИФИ. 2008. Т.144. – (Pisarev A.A., Cvetkov I.V., Marenkov E.D., et al. “Permeability of hydrogen through metals” // MIFI. 2008. V.144.)
- Pisarev, A.A. Hydrogen adsorption on the surface of metals / A.A. Pisarev // Gaseous hydrogen embrittlement of materials in energy technologies. – [S.l.]: Woodhead Publ. 2012. P. 3–26.
- Nagumo, M. Fundamentals of hydrogen embrittlement / M. Nagumo. – Singapore: Springer, 2016. V.921.
- Michler, T. Assessing the effect of low oxygen concentrations in gaseous hydrogen embrittlement of DIN 1.4301 and 1.1200 steels at high gas pressures / T. Michler, I.E. Boitsov, I. Malkov [et al.]. // Corros. Sci. 2012. V.65. P.169–177.
- Ryu, K.M. Hydrogen behavior in Ti-added reduced activation ferritic-martensitic steels / K.M. Ryu, D.G. Lee, J. Moon, et al. // Metals and Mater. Inter. 2021. V.27. P.425–435.
- Olden, V. Hydrogen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint–Experiments and FE simulations / Olden V., Alvaro A., Akselsen O. M. // Inter. J. Hydrogen Energy. 2012. V.37. №15. P.11474–11486.
- Thomas, A. Hydrogen diffusion and trapping in X70 pipeline steel / A. Thomas, J.A. Szpunar // Inter. J. Hydrogen Energy. 2020. V.45. №3. С.2390–2404.
- Dong C.F. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking / Dong C.F., Liu Z.Y., Li X.G. [et al.] // Inter. J. Hydrogen Energy. 2009. V.34. №24. P.9879–9884.
- Liu Q. Hydrogen trapping in some advanced high strength steels / Liu Q., Venezuela J., Zhang M. et al. // Corros. Sci. 2016. V.111. P.770–785.
- Osabohien, H. Hydrogen permeability and diffusivity in hydrogen transfer pipelines: the effect of hydrogen pressure / H. Osabohien, A. Onshore // Inter. J. Eng. Appl. Sci. Techn. 2024. V.8. Is.12. P.28–43.
- Merson, E.D. The influence of electrolytic hydrogenation current density on the concentration of diffusive active hydrogen in S235JR low-carbon steel / E.D. Merson, V.A. Poluyanov , D.L. Merson, et al. // Frontier Mater. Techn. 2015. №4. P.76–82.
- Bolobov, V. I. Estimation of the influence of compressed hydrogen on the mechanical properties of pipeline steels / V.I. Bolobov, I.U. Latipov, G.G. Popov, et al. // Energies. 2021. V.14. №19. P.6085.
- Pyshmintsev, I.Y. Preliminary assessment of X52 large-diameter pipes suitability for transportation of pressurized pure gaseous hydrogen / I.Y. Pyshmintsev, A.B. Gizatullin, Devyaterikova N.A. [et al.] // Izvestiya. Ferrous Metal. 2023. V.66. №1. P. 35–42.
- Kiuchi K. The solubility and diffusivity of hydrogen in well-annealed and deformed iron / Kiuchi K., McLellan R.B. // Perspectives in Hydrogen in Metals. – [S.l.]: Pergamon, 1986. P.29–52.
- Stopher, M.A. Modelling hydrogen migration and trapping in steels / M.A. Stopher, P. Lang, E. Kozeschnik, P.E.J. Rivera-Diaz-del-Castillo // Mater. Design. 2016. V.106. P.205–215.
- Liu Q. Determination of the hydrogen fugacity during electrolytic charging of steel / Liu Q., Atrens A.D., Shi Z. [et al.] // Corros. Sci. 2014. V.87. P.239–258.
- Michler, T. Review and assessment of the effect of hydrogen gas pressure on the embrittlement of steels in gaseous hydrogen environment / T. Michler, K. Wackermann, F. Schweizer // Metals. 2021. V. 11(4). P.637.
- San Marchi C. Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures / San Marchi C., B.P. Somerday, S.L. Robinson // Inter. J. Hydrogen Energy. 2007. V.32. №1. P.100–116.
- Штремель, М.А. Прочность сплавов: в двух частях. Ч.2. – М.: [б.и.]. 1997. – (Shtremel M.A. “Strength of alloys”. Pt.2. – Moscow: [S.n.], 1997.)
Arquivos suplementares
