Evaluation of retinal angioarchitectonics by optical coherence angiography and its diagnostic value in functional amblyopia

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

AIM: This study aimed to evaluate the density parameters of the superficial and deep plexuses of the retina, choriocapillary layer, and avascular zone in eyes with amblyopia of various origins and paired fellow eyes.

MATERIAL AND METHODS: The study included 40 patients aged 6–16 (mean, 8.72±3.04) years. All patients were divided into 2 groups: group 1 included amblyopic, dysbinocular, and anisometropic eyes (n=48), and group 2 (control group) included paired fellow eyes without amblyopia (n=32). The density of the superficial and deep vascular plexuses of the retina, choriocapillary layer, and avascular zone parameters (area, perimeter, and circumference) were evaluated using spectral optical coherence tomography (RS-3000 Advance 2, Nidek, Japan). Correlation analysis was performed using Pearson’s linear correlation coefficient (r).

RESULTS: No significant differences were found in the density of the superficial and deep retinal vessels, choriocapillary layer, and avascular zone parameters of the retina in eyes amblyopia of various origins compared with paired fellow eyes (p >0.05). No correlation was found between retinal perfusion data and functional and anatomical parameters of amblyopic eyes.

CONCLUSION: No relationship was noted between the vascular parameters of the posterior pole of the eye and the maximally corrected visual acuity, which confirms the absence of changes in retinal perfusion in amblyopia and excludes its role in the pathogenesis.

Full Text

Restricted Access

About the authors

Regina R. Stalmakhova

Helmholtz National Medical Research Center of Eye Diseases

Author for correspondence.
Email: reginahubieva@mail.ru
ORCID iD: 0000-0002-8383-0127
SPIN-code: 1032-8283

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Alexander V. Apaev

Helmholtz National Medical Research Center of Eye Diseases

Email: doc229@mail.ru
ORCID iD: 0000-0001-7669-1256

MD, Researcher

Russian Federation, Moscow

Tatyana Yu. Larina

Helmholtz National Medical Research Center of Eye Diseases

Email: tlpenguin@mail.ru
ORCID iD: 0000-0002-7621-4190
SPIN-code: 8715-0625

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

References

  1. Gerali PS, Flom MC, Raab EL. Report of the Children’s Vision Screening Task Force. Schaumburg, IL: National Society to Prevent Blindness; 1990.
  2. Gilbert C, Foster A. Childhood blindness in the context of VISION 2020 — the right to sight. Bull World Health Organ. 2001;79(3):227–232.
  3. Yekta A, Hooshmand E, Saatchi M, et al. Global Prevalence and Causes of Visual Impairment and Blindness in Children: A Systematic Review and Meta-Analysis. J Curr Ophthalmol. 2022;34(1):1–15. doi: 10.4103/joco.joco_135_21
  4. Fu Z, Hong H, Su Z, et al. Global prevalence of amblyopia and disease burden projections through 2040: a systematic review and meta-analysis. Br J Ophthalmol. 2020;104(8):1164–1170. doi: 10.1136/bjophthalmol-2019-314759
  5. Avetisov ES. Disbinokulyarnaya ambliopiya i ee lechenie. Moscow: Meditsina; 1968. (In Russ).
  6. Bi H, Zhang B, Tao X, et al. Neuronal responses in visual area V2 (V2) of macaque monkeys with strabismic amblyopia. Cereb Cortex. 2011;21(9):2033–2045. doi: 10.1093/cercor/bhq272
  7. Movshon JA, Eggers HM, Gizzi MS, et al. Effects of early unilateral blur on the macaque’s visual system. III. Physiological observations. J Neurosci. 1987;7(5):1340–1351. doi: 10.1523/JNEUROSCI.07-05-01340.1987
  8. Shooner C, Hallum LE, Kumbhani RD, et al. Population representation of visual information in areas V1 and V2 of amblyopic macaques. Vision Res. 2015;114:56–67. doi: 10.1016/j.visres.2015.01.012
  9. Kumaran SE, Khadka J, Baker R, Pesudovs K. Patient-reported outcome measures in amblyopia and strabismus: a systematic review. Clin Exp Optom. 2018;101(4):460–484. doi: 10.1111/cxo.12553
  10. Chen HS, Liu C, Lu DW. Comparison of glaucoma diagnostic accuracy of macular ganglion cell complex thickness based on nonhighly myopic and highly myopic normative database. Taiwan J Ophthalmol. 2016;6(1):15–20. doi: 10.1016/j.tjo.2016.01.001
  11. Yilmaz I, Ocak OB, Yilmaz BS, et al. Comparison of quantitative measurement of foveal avascular zone and macular vessel density in eyes of children with amblyopia and healthy controls: an optical coherence tomography angiography study. J AAPOS. 2017;21(3):224–228. doi: 10.1016/j.jaapos.2017.05.002
  12. Lonngi M, Velez FG, Tsui I, et al. Spectral-Domain Optical Coherence Tomographic Angiography in Children With Amblyopia. JAMA Ophthalmol. 2017;135(10):1086–1091. doi: 10.1001/jamaophthalmol.2017.3423
  13. Cheung CY, Li J, Yuan N, et al. Quantitative retinal microvasculature in children using swept-source optical coherence tomography: the Hong Kong Children Eye Study. Br J Ophthalmol. 2018:bjophthalmol-2018-312413. doi: 10.1136/bjophthalmol-2018-312413
  14. Wong ES, Zhang XJ, Yuan N, et al. Association of Optical Coherence Tomography Angiography Metrics With Detection of Impaired Macular Microvasculature and Decreased Vision in Amblyopic Eyes: The Hong Kong Children Eye Study. JAMA Ophthalmol. 2020;138(8):858–865. doi: 10.1001/jamaophthalmol.2020.2220
  15. Liu C, Zhang Y, Gu X, et al. Optical coherence tomographic angiography in children with anisometropic amblyopia. BMC Ophthalmol. 2022;22(1):269. doi: 10.1186/s12886-022-02486-9
  16. Ye H, Wang S, Zhang Y, et al. Microvasculature evaluation of anisometropic amblyopia children by Angio-OCT. Sci Rep. 2023;13(1):2780. doi: 10.1038/s41598-023-29816-1
  17. Demirayak B, Vural A, Onur IU, et al. Analysis of Macular Vessel Density and Foveal Avascular Zone Using Spectral-Domain Optical Coherence Tomography Angiography in Children With Amblyopia. J Pediatr Ophthalmol Strabismus. 2019;56(1):55–59. doi: 10.3928/01913913-20181003-02
  18. Pujari A, Chawla R, Mukhija R, et al. Assessment of macular vascular plexus density using optical coherence tomography angiography in cases of strabismic amblyopia. Indian J Ophthalmol. 2019;67(4):520–521. doi: 10.4103/ijo.IJO_1069_18
  19. Karabulut M, Karabulut S, Sül S, Karalezli A. Microvascular changes in amblyopic eyes detected by optical coherence tomography angiography. J AAPOS. 2019;23(3):155.e1–155.e4. doi: 10.1016/j.jaapos.2018.12.009
  20. Doğuizi S, Yılmazoğlu M, Kızıltoprak H, et al. Quantitative analysis of retinal microcirculation in children with hyperopic anisometropic amblyopia: an optical coherence tomography angiography study. J AAPOS. 2019;23(4):201.e1–201.e5. doi: 10.1016/j.jaapos.2019.01.017
  21. Araki S, Miki A, Goto K, et al. Foveal avascular zone and macular vessel density after correction for magnification error in unilateral amblyopia using optical coherence tomography angiography. BMC Ophthalmol. 2019;19(1):171. doi: 10.1186/s12886-019-1177-z
  22. Sampson DM, Gong P, An D, et al. Axial Length Variation Impacts on Superficial Retinal Vessel Density and Foveal Avascular Zone Area Measurements Using Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2017;58(7):3065–3072. doi: 10.1167/iovs.17-21551

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86503 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80630 от 15.03.2021 г
.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies