Glioma of the anterior visual pathway in children. Part II. Current treatment trends

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The literature review presents modern treatment aspects for anterior optic pathway gliomas (OPGs), which are low-grade brain tumors accounting for 20%–30% of childhood gliomas, can occur anywhere along the visual pathways and in the development of the surrounding structure, and are predominantly benign. The predominant histological type of tumor in this localization is piloid astrocytoma (PA), less commonly pilomyxoid astrocytoma (PMA). However, the course of anterior OPGs is unpredictable and varies from spontaneous regression to progression with severe visual, neurological, and endocrine disorders, affecting treatment and disease prognosis. Although there have been advances in clinical studies based on histological and molecular genetic analyses, no fundamental changes in survival rates and recurrence-free periods and improvements in functional outcomes have been achieved. Furthermore, no studies have comprehensively analyzed the functional results depending on the management tactics of pediatric patients with anterior visual pathway gliomas. Anterior optic pathway glioma treatment is challenging and complex problem, which depends on the patient’s age, clinical picture, localization, surgical resectability, and histological and molecular genetic study results. It includes surgical treatment, chemotherapy, radiation therapy, the use of targeted therapy drugs, and additional advanced techniques that are still under development and research. Optimal treatment of anterior optic pathway gliomas in children remains a topic of discussion in the current literature.

Full Text

Restricted Access

About the authors

Oksana O. Alyaeva

N.N. Burdenko National Scientific and Practical Center for Neurosurgery

Author for correspondence.
Email: xy.83@mail.ru
ORCID iD: 0009-0007-6157-8382
SPIN-code: 7606-4984

MD, Cand. Sci. (Med.)

Russian Federation, 16 Tverskaya-Yamskaya, 125047 Moscow

Nataliya K. Serova

N.N. Burdenko National Scientific and Practical Center for Neurosurgery

Email: NSerova@nsi.ru
ORCID iD: 0000-0003-0148-7298
SPIN-code: 5079-8064

MD, Dr. Sci. (Med.), Рrofessor

Russian Federation, 16 Tverskaya-Yamskaya, 125047 Moscow

References

  1. Udaka YT, Packer RJ. Pediatric Brain Tumors. Neurol Clin. 2018;36(3):533–556. doi: 10.1016/j.ncl.2018.04.009
  2. Binning MJ, Liu JK, Kestle JR, et al. Optic pathway gliomas: a review. Neurosurg Focus. 2007;23(5):E2. doi: 10.3171/FOC-07/11/E2
  3. Prada CE, Hufnagel RB, Hummel TR, et al. The use of magnetic resonance imaging screening for optic pathway gliomas in children with neurofibromatosis type 1. J Pediatr. 2015;167(4):851–856.e1. doi: 10.1016/j.jpeds.2015.07.001
  4. Valiahmetova JeF, Mazerkina NA, Medvedeva OA, et al. Optic pathway gliomas associated with neurofibromatosis type 1 in children. Pediatric Hematology/Oncology and Immunopathology. 2019;18(4):29–38. EDN: GWKMWA doi: 10.24287/1726-1708-2019-18-4-29-38
  5. Trevisson E, Cassina M, Opocher E, et al. Natural history of optic pathway gliomas in a cohort of unselected patients affected by Neurofibromatosis 1. J Neurooncol. 2017;134(2):279–287. doi: 10.1007/s11060-017-2517-6
  6. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803–820. doi: 10.1007/s00401-016-1545-1
  7. Komotar RJ, Burger PC, Carson BS, et al. Pilocytic and pilomyxoid hypothalamic/chiasmatic astrocytomas. Neurosurgery. 2004;54:72–80. doi: 10.1227/01.neu.0000097266.89676.25
  8. Trunin YuYu, Golanov AV, Konovalov AN, et al. Stereotactic irradiation in the complex treatment of patients with intracranial pilocytic astrocytoma. Burdenko’s Journal of Neurosurgery. 2021; 85(2):34–46. EDN: JXJCKL doi: 10.17116/neiro20218502134
  9. Hutt-Cabezas M, Karajannis MA, Zagzag D, et al. Activation of mtorc1/mtorc2 signaling in pediatric low-Grade glioma and pilocytic astrocytoma reveals mtor as a therapeutic target. Neuro Oncol. 2013;15(12):1604–1614. doi: 10.1093/neuonc/not132
  10. Parsa CF, Hoyt CS, Lesser RL, et al. Spontaneous Regression of Optic Gliomas: thirteen cases documented by serial neuroimaging. Arch Ophthalmology. 2001;4(119):516–29. doi: 10.1001/archopht.119.4.516
  11. Piccirilli M, Lenzi J, Delfinis C, et al. Spontaneous regression of optic pathways gliomas in three patients with neurofibromatosis type I and critical review of the literature. Child’s Nerv. Syst. 2006;22:1332–1337. doi: 10.1007/s00381-006-0061-3
  12. Farazdaghi MK, Katowitz WR, Avery RA. Current treatment of optic nerve gliomas. Curr Opin Ophthalmol. 2019;30:356–63. doi: 10.1097/ICU.0000000000000587
  13. Ulitin AYu, Zheludkova OG, Ivanov PI, et al. Practical recommendations for drug treatment of primary tumors of the central nervous system. Malignant tumors. 2022;12(3s2-1):113–140. EDN: NYGIAV doi: 10.18027/2224-5057-2022-12-3s2-113-140.
  14. Kobyakov GL, Absalyamova OV, Bekyashev AH, et al. Practical recommendations for drug treatment of primary tumors of the central nervous system. Malignant tumors. 2020;10(3s2-1):109–133. doi: 10.18027/2224-5057-2020-10-3s2-07
  15. Gnekow AK, Falkenstein F, von Hornstein S, Zwiener I, Berkefeld S, Bison B, Warmuth-Metz M, Driever PH, Soerensen N, Kortmann RD, Pietsch T, Faldum A. Long-term follow-up of the multicenter, multidisciplinary treatment study HIT-LGG-1996 for low-grade glioma in children and adolescents of the German Speaking Society of Pediatric Oncology and Hematology. Neuro Oncol. 2012;14(10):1265–1284. doi: 10.1093/neuonc/nos202
  16. Gnekow AK, Walker DA, Kandels D, et al. A European randomised controlled trial of the addition of etoposide to standard vincristine and carboplatin induction as part of an 18-month treatment programme for childhood (≤16 years) low grade glioma – A final report. European J Cancer. 2017;81:206–225. doi: 10.1016/j.ejca.2017.11.017
  17. Valiakhmetova EF, Budanov OI, Gorelyshev SK, et al. Optic pathway gliomas in children: prognostic factors, response assessment, role of carboplatin and vincristine chemotherapy regime. Pediatric Hematology/Oncology and Immunopathology. 2019;18(1):62–72. EDN: YGBTSY doi: 10.24287/1726-1708-2019-18-1-62-72
  18. Ater JL, Zhou T, Holmes E, et al. Randomized study of two chemotherapy regimens for treatment of low-grade glioma in young children: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(21):2641–2647. doi: 10.1200/JCO.2011.36.6054
  19. Kandels D, Pietsch T, Bison B, et al. Loss of efficacy of subsequent nonsurgical therapy after primary treatment failure in pediatric low-grade glioma patients-Report from the German SIOP-LGG 2004 cohort. Int J Cancer. 2020;147(12):3471–3489. doi: 10.1002/ijc.33170
  20. Buckner JC, Shaw EG, Pugh SL, et al. Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. NEJM. 2016;374:1344–55.doi: 10.1056/NEJMoa1500925
  21. Shah AC, Minturn JE, Li Y, et al. Carboplatin rechallenge after hypersensitivity reactions in pediatric patients with low-grade glioma. Pediatr Blood Cancer. 2016; 63(1):21–26. doi: 10.1002/pbc.25697
  22. Goodden J, Pizer B, Pettorini B, et al. The role of surgery in optic pathway/hypothalamic gliomas in children. Neurosurg Pediatr. 2014;13:1–12. doi: 10.3171/2013.8.PEDS12546
  23. Liao C, Zhang H, Liu Z, et al. The visual acuity outcome and relevant factors affecting visual improvement in pediatric sporadic chiasmatic-hypothalamic glioma patients who received surgery. Front Neurology. 2020;11:766. doi: 10.3389/fneur.2020.00766
  24. Liu ZM, Liao CH, An X, et al. The role of imaging features and resection status in the survival outcome of sporadic optic pathway glioma children receiving different adjuvant treatments. Neurosurg Rev. 2022;45(3):2277–2287. doi: 10.1007/s10143-022-01743-1
  25. Konovalov A, Gorelyshev S, Serova N. Surgery of giant gliomas of chiasma and IIIrd ventricle. Acta Neurochir (Wien). 1994;130(1–4):71–79. doi: 10.1007/BF01405505
  26. Matuev KB, Gorelyshev SK, Shishkina LV, et al. Biological features and long-term results of comprehensive treatment of brain tumors in infants. Burdenko’s Journal of Neurosurgery. 2014;78(2):46–56. (in Russ.) EDN: SDIAFZ
  27. Gorelyshev SK, Medvedeva OA. Surgical approaches to the third ventricle of the brain in children. Russian journal of pediatric surgery, anesthesia and intensive care. 2021;11(1):47–54. EDN: ZCGGSC doi: 10.17816/psaic726.
  28. Cross KA, Salehi A, Abdelbaki MS, et al. MRI-guided laser interstitial thermal therapy for deep-seated gliomas in children with neurofibromatosis type 1: Report of two cases. Child’s Nerv Syst. 2023;39(3):787–791. doi: 10.1007/s00381-022-05660-y
  29. Cherlow JM, Shaw DWW., Margraf LR, et.al. Conformal radiation therapy for pediatric patients with low-grade glioma: Results from the Children’s Oncology Group Phase 2 Study ACNS0221. Int J Radiat Oncol Biol Phys. 2019;103:861–868. doi: 10.1016/j.ijrobp.2018.11.004
  30. Tsang DS, Murphy ES, Merchant TE. Radiation therapy for optic pathway and hypothalamic low-grade gliomas in children. Int J Radiat Oncol Biol Phys. 2017;99:642–651. doi: 10.1016/j.ijrobp.2017.07.023
  31. Gan HW, Phipps K, Aquilina K, et al. Neuroendocrine morbidity after pediatric optic gliomas: A longitudinal analysis of 166 children over 30 years. Clin Endocrinol and Metab. 2015;100(10):3787–3799. doi: 10.1210/jc.2015-2028
  32. Merchant TE, Conklin HM, Wu S, et al. Late effects of conformal radiation therapy for pediatric patients with low-grade glioma: Prospective evaluation of cognitive, endocrine, and hearing deficits. J Clin Oncol. 2009;27(22):3691–3697. doi: 10.1200/JCO.2008.21.2738
  33. Indelicato DJ, Rotondo RL, Uezono H, et al. Outcomes following proton therapy for pediatric low-grade glioma. Int J Radiat Oncol Biol Phys. 2019;104(1):149–56. doi: 10.1016/j.ijrobp.2019.01.078
  34. Merchant TE, Hua CH, Shukla H, et al. Proton versus photon radiotherapy for common pediatric brain tumors: Comparison of models of dose characteristics and their relationship to cognitive function. Pediatr Blood Cancer. 2008;51:110–117. doi: 10.1002/pbc.21530
  35. Eaton BR, Yock T. The use of proton therapy in the treatment of benign or low-grade pediatric brain tumors. Cancer J. 2014;20(6):403–408. doi: 10.1097/ppo.0000000000000079
  36. Hall MD, Bradley JA, Rotondo RL, et al. Risk of radiation vasculopathy and stroke in pediatric patients treated with proton therapy for brain and skull base tumors. Int J Radiat Oncol Biol Phys. 2018;101(4):854–859. doi: 10.1016/j.ijrobp.2018.03.027
  37. Greenberger BA, Pulsifer MB, Ebb DH, et al. Clinical outcomes and late endocrine, neurocognitive, and visual profiles of proton radiation for pediatric low-grade gliomas. Int. J. Radiat. Oncol. Biol. Phys.2014;89(5):1060–1068.doi: 10.1016/j.ijrobp.2014.04.053
  38. Simonova G, Kozubikova P, Liscak R, Novotny JJr. Leksell Gamma Knife treatment for pilocytic astrocytomas: long-term results. J Neurosurg Pediatr. 2016;18(1):58–64. doi: 10.3171/2015.10.PEDS14443
  39. El-Shehaby AM, Reda WA, Abdel Karim KM, et al. Single-session gamma knife radiosurgery for optic pathway/hypothalamic gliomas. J Neurosurg. 2016;125:50–57. doi: 10.3171/2016.8.GKS161432
  40. Fangusaro JR, Onar-Thomas A, Poussaint TY, et al. LTBK-01. Updates On The Phase Ii And Re-treatment Study Of AZD6244 (Selumetinib) For Children With Recurrent Or Refractory Pediatric Low Grade Glioma: A Pediatric Brain Tumor Consortium (PBTC) Study. Neuro Oncol. 2022;24(8):1404. doi: 10.1093/neuonc/noac029. Erratum for: doi: 10.1093/neuonc/noy109
  41. Fangusaro J, Onar-Thomas A, Young Poussaint T, et al. Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncol. 2019;20(7):1011–1022. doi: 10.1016/S1470-2045(19)30277-3
  42. Fangusaro J, Onar-Thomas A, Poussaint TY, et al. A phase II trial of selumetinib in children with recurrent optic pathway and hypothalamic low-grade glioma without NF1: a Pediatric Brain Tumor Consortium study. Neuro Oncol. 2021;23(10):1777–1788. doi: 10.1093/neuonc/noab047
  43. Selt F, van Tilburg CM, Bison B, et al. Response to trametinib treatment in progressive pediatric low-grade glioma patients. J Neurooncol.2020;149(3):499–510. doi: 10.1007/s11060-020-03640-3
  44. Barbato MI, Nashed J, Bradford D, et al. FDA Approval Summary:Dabrafenib in combination with trametinib for BRAF V600E mutation-positive low-grade glioma. Clin Cancer Res. 2023:30(2):263–268. doi: 10.1158/1078-0432.CCR-23-1503
  45. de Marcellus C, Tauziède-Espariat A, Cuinet A, et al. The role of irinotecan-bevacizumab as rescue regimen in children with low-grade gliomas: a retrospective nationwide study in 72 patients. J Neurooncol. 2022;157(2):355–364. doi: 10.1007/s11060-022-03970-4
  46. Green K, Panagopoulou P, D’Arco F, et al. A nationwide evaluation of bevacizumab-based treatments in pediatric low-grade glioma in the UK: Safety, efficacy, visual morbidity, and outcomes. Neuro Oncol. 2023;25(4):774–785. doi: 10.1093/neuonc/noac223

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86503 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80630 от 15.03.2021 г
.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies